High-order Compact Difference Methods for Simulating Wave Propagations in Excitable Media
نویسندگان
چکیده
In this paper, we present a study of some high-order compact difference schemes for solving the Fitzhugh-Nagumo equations governed by two coupled time-dependent nonlinear reaction diffusion equations in two variables. Solving the Fitzhugh-Nagumo equations is quite challenging, since the equations involve spatial and temporal dynamics in two different scales and the solutions exhibit shock-like waves. The numerical schemes employed have sixth order accuracy in space, and fourth order in time if the fourth order Runge-Kutta method is adopted for time marching. To improve efficiency, we also propose an ADI scheme (for two dimensional problems), which has second order accuracy in time. Numerical results are presented for plane wave propagation in one dimension and spiral waves for two dimensions.
منابع مشابه
High Order Compact Finite Difference Schemes for Solving Bratu-Type Equations
In the present study, high order compact finite difference methods is used to solve one-dimensional Bratu-type equations numerically. The convergence analysis of the methods is discussed and it is shown that the theoretical order of the method is consistent with its numerical rate of convergence. The maximum absolute errors in the solution at grid points are calculated and it is shown that the ...
متن کاملA Nearly Analytical Discrete Method for Wave-Field Simulations in 2D Porous Media
The nearly analytic discrete method (NADM) is a perturbation method originally proposed by Yang et al. (2003) [26] for acoustic and elastic waves in elastic media. This method is based on a truncated Taylor series expansion and interpolation approximations and it can suppress effectively numerical dispersions caused by the discretizating the wave equations when too-coarse grids are used. In the...
متن کاملHigh Order Compact Finite Difference Schemes for the Helmholtz Equation with Discontinuous Coefficients
In this paper, thirdand fourth-order compact finite difference schemes are proposed for solving Helmholtz equations with discontinuous media along straight interfaces in two space dimensions. To keep the compactness of the finite difference schemes and get global high order schemes, even at the interface where the wave number is discontinuous, the idea of the immersed interface method is employ...
متن کاملA High Order Approximation of the Two Dimensional Acoustic Wave Equation with Discontinuous Coefficients
This paper concerns with the modeling and construction of a fifth order method for two dimensional acoustic wave equation in heterogenous media. The method is based on a standard discretization of the problem on smooth regions and a nonstandard method for nonsmooth regions. The construction of the nonstandard method is based on the special treatment of the interface using suitable jump conditio...
متن کاملHigh order finite difference methods for wave propagation in discontinuous media
Strictly stable high order finite difference approximations are derived for the second order wave equation with discontinuous coefficients. The discontinuity is treated by splitting the domain at the discontinuities in a multi block fashion. Each sub domain is discretized with compact second derivative summation by parts (SBP) operators and the blocks are patched together to a global domain by ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015